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I will call the transfer functions normalized over the whole range of observable mo-
menta (as in MTM2.5) “type 1” transfer functions and transfer functions normalized
to 1 after all cuts (as in MEAT and MTM3) “type 2” transfer functions.

The procedure we used to calculate the acceptance dependence on JES in units
of pT -dependent sigma is as follows:

1. Smear the partons according to the type 1 transfer functions. This gives us
something similar to level 5 jets.

2. For each jet, calculate σJES(pT,jet). This is done, basically, by reversing the jet
corrections, so that we can use the standard CDF systematics developed for
level 0 jets.

3. For a given number of standard deviations, ∆JES, calculate the shifted jet
energy scale: JES = 1 + ∆JES σJES(pT,jet).

4. Scale the jets obtained in the first step by 1/JES.

5. See whether every scaled jet in the event passes the c0 = 20 GeV pT cut.
Calculate acceptance as a function of ∆JES using events which pass this cut.

Note that steps 4 and 5 should be equivalent to applying a new cut c1 = c0 JES to
the original event sample with “unscaled” jets. Also, this description is just a rough
outline which does not talk about lepton cuts, eta cuts, minimum ∆R between jets,
etc.

For type 2 transfer functions this procedure is not possible: the smeared jets will
automatically end up passing the pT cut (even though the TFs are implemented with
a significant flexibility in choosing the JES and, therefore, the cut). Instead, the
jet pT dependent part of the acceptance should be calculated by finding the average
value of the product of the four jet efficiencies. The averaging should be done over tt̄
parton-level events generated, for example, by Pythia.
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At this time, our jet efficiencies are functions of parton pT , mass, and JES:
ε = εnow(x, JES), where x is the vector of parton-level quantities (pT , mass). In-
stead, for acceptance calculation purposes, we really want them to be functions of
x and ∆JES: ε = ε(x, ∆JES). The reason why we can’t just substitute JES =
1 + ∆JES σJES(pT,jet) is that JES here is a function of pT,jet which is unknown, not
pT of the parton.

If one thinks how to approach the calculation of ε(x, ∆JES) in case we had type 1
transfer functions available, the procedure would be similar: smear the parton to
get the jet, calculate σJES(pT,jet), check whether the jet passes the scaled pt cut c1.
I believe that this procedure is equivalent to calculating the following integral:∫

W (y|x)θ(pT,jet − c1)dy

where y stands for jet-level quantities (observed), and θ(...) is the Heaviside step
function. This means

ε(x, ∆JES) =
∫

W (y|x)θ(pT,jet − c0(1 + ∆JES σJES(pT,jet)))dy

Let’s assume for now that integration over angles can be factored out. This is not
completely true — typically reconstructed jet angle and pT are correlated — but
simplifies subsequent reasoning a lot. Let’s also assume for simplicity that the jet is
far away from the |η| = 2 boundary. Then the angular part of the transfer function
integrates to 1, and

ε(x, ∆JES) =
∫

WT (pT,jet|x)θ(pT,jet − c0(1 + ∆JES σJES(pT,jet)))dpT,jet

Note that, at least for small ∆JES values, the equation

pT,jet − c0(1 + ∆JES σJES(pT,jet)) = 0

has only one solution pT,jet = p0(∆JES). This is because the derivative of the func-

tion pT,jet − c0(1 + ∆JES σJES(pT,jet)) over pT,jet is 1 − c0∆JES
dσJES(pT,jet))

dpT,jet
which is

guaranteed to be positive for small ∆JES magnitudes. Because of this, at least for
small ∆JES values the efficiency integral can be rewritten as

ε(x, ∆JES) =
∫ ∞

p0(∆JES)
WT (pT,jet|x)dpT,jet

At the same time,

εnow(x, JES) ≡
∫ ∞

c0 JES
WT (pT,jet|x)dpT,jet

which simply means that ε(x, ∆JES) = εnow(x, p0(∆JES)/c0). Therefore, to calculate
ε(x, ∆JES) we only need to prepare the interpolation table for p0(∆JES) values by
solving the corresponding equation for various ∆JES, and after that we should be
able to use the existing efficiencies.
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